
Java Specialists in Action

Dr Heinz Kabutz
The Java Specialists’ Newsletter
http://www.javaspecialists.co.za

 of 482

Java Specialists in Action

 Using dynamic proxies to write less code

 of 483

Background

 Heinz Kabutz
• The Java Specialists’ Newsletter

 20 000 readers in 111 countries

• Sun Java Champion

• Java programmer since 1997
 Worked on large Java systems
• 500 000 – 1 000 000 LOC

• Taught Java to hundreds of developers
 Java Patterns Course
 Java 5 Delta Course
 http://javaspecialists.co.za/courses

 of 484

 of 485

Questions

 Please please please please ask questions!

 There are some stupid questions
• They are the ones you didn’t ask

• Once you’ve asked them, they are not stupid anymore

 Assume that if you didn’t understand something that it
was my fault

 The more you ask, the more interesting the talk will be

 of 486

Introduction to Topic

 In this talk, we will look at:
• Design Patterns

• Dynamic Proxies in Java

• Soft, Weak and Strong references

 For additional resources, or to find out how
“hi there”.equals(“cheers!”) == true, visit:
• The Java™ Specialists’ Newsletter
• http://www.javaspecialists.co.za

 of 487

Design Patterns

 Mainstream of OO landscape, offering us:
• View into brains of OO experts

• Quicker understanding of
existing designs
 e.g. Visitor pattern used by

Annotation Processing Tool

• Improved communication
between developers

• Readjusting of “thinking mistakes” by developers

 of 488

Vintage Wines

 Design Patterns are like good red wine
• You cannot appreciate them at first

• As you study them you learn the difference between plonk and
vintage, or bad and good designs

• As you become a connoisseur you experience the various textures
you didn’t notice before

 Warning: Once you are hooked, you will no longer be
satisfied with inferior designs

 of 489

Proxy Pattern

 Intent [GoF95]
• Provide a surrogate or

placeholder for another
object to control access
to it.

 of 4810

Proxy Structure

 of 4811

Types of Proxies in GoF

 Virtual Proxy
• creates expensive objects on demand

 Remote Proxy
• provides a local representation for an object in a different address

space

 Protection Proxy
• controls access to original object

We will focus
on this type

 of 4812

Approaches to writing proxies

 Handcoded
• Only for the very brave … or foolish

 Autogenerated code
• RMI stubs and skeletons created by rmic

 Dynamic proxies
• Available since JDK 1.3

• Dynamically creates a new class at runtime

• Flexible and easy to use

 of 4813

Model for example

 Company creates
moral fibre
“on demand”

 of 4814

public class Company {
 // ...
 private final MoralFibre moralFibre; // set in constructor

 public void becomeFocusOfMediaAttention() {
 System.out.println("Look how good we are...");
 cash -= moralFibre.actSociallyResponsibly();
 cash -= moralFibre.cleanupEnvironment();
 cash -= moralFibre.empowerEmployees();
 }

 @Override
 public String toString() {
 Formatter formatter = new Formatter();
 formatter.format("%s has $ %.2f", name, cash);
 return formatter.toString();
 }
}

 of 4815

public class MoralFibreImpl implements MoralFibre {
 // very expensive to create moral fibre!
 private byte[] costOfMoralFibre = new byte[900 * 1000];

 { System.out.println("Moral Fibre Created!"); }
 // AIDS orphans
 public double actSociallyResponsibly() {
 return costOfMoralFibre.length / 3;
 }
 // shares to employees
 public double empowerEmployees() {
 return costOfMoralFibre.length / 3;
 }
 // oiled sea birds
 public double cleanupEnvironment() {
 return costOfMoralFibre.length / 3;
 }
}

 of 4816

Handcoded Proxy

 Usually results in a lot of effort

 Good programmers have to be lazy
• DRY principle

 Don’t repeat yourself

 Shown just for illustration

 of 4817

public class MoralFibreProxy implements MoralFibre {
 private MoralFibreImpl realSubject;
 private MoralFibre realSubject() {
 if (realSubject == null) { // need some synchronization
 realSubject = new MoralFibreImpl();
 }
 return realSubject;
 }
 public double actSociallyResponsibly() {
 return realSubject().actSociallyResponsibly();
 }
 public double empowerEmployees() {
 return realSubject().empowerEmployees();
 }
 public double cleanupEnvironment() {
 return realSubject().cleanupEnvironment();
 }
}

 of 4818

import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket0 {
 public static void main(String[] args) throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, new MoralFibreProxy());
 SECONDS.sleep(2); // better than Thread.sleep(2000);
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

 of 4819

Dynamic Proxies

 Handcoded proxy flawed
• Previous approach broken – what if toString() is called?

• Fixing synchronization problems would need to be done everywhere

 Allows you to write a method call handler
• Is invoked every time any method is called on interface

 Easy to use
• But, seriously underused feature of Java

 of 4820

Strong, Soft and Weak References

 Java 1.2 introduced concept of soft and weak
references

 Weak reference is released when no strong reference is
pointing to the object

 Soft reference can be released, but will typically only
be released when memory is low
• Works correctly since JDK 1.4

 of 4821

Object Adapter Pattern – Pointers

 References are not transparent

 We make them more transparent by defining a Pointer
interface
• Can then be Strong, Weak or Soft

public interface Pointer<T> {
 void set(T t);
 T get();
}

 of 4822

public class StrongPointer<T> implements Pointer<T> {
 private T t;
 public void set(T t) { this.t = t; }
 public T get() { return t; }
}

import java.lang.ref.Reference;
public abstract class RefPointer<T> implements Pointer<T> {
 private Reference<T> ref;
 protected void set(Reference<T> ref) { this.ref = ref; }
 public T get() { return ref == null ? null : ref.get(); }
}

import java.lang.ref.SoftReference;
public class SoftPointer<T> extends RefPointer<T> {
 public void set(T t) { set(new SoftReference<T>(t)); }
}

import java.lang.ref.WeakReference;
public class WeakPointer<T> extends RefPointer<T> {
 public void set(T t) { set(new WeakReference<T>(t)); }
}

 of 4823

Using Turbocharged enums

 We want to define enum for these pointers

 But, we don’t want to use switch
• Switch and multi-conditional if-else are anti-OO

• Rather use inheritance, strategy or state patterns

 Enums allow us to define abstract methods
• We implement these in the enum values themselves

 of 4824

public enum PointerType {
 STRONG { // these are anonymous inner classes
 public <T> Pointer<T> make() { // note the generics here
 return new StrongPointer<T>();
 }
 },
 WEAK {
 public <T> Pointer<T> make() {
 return new WeakPointer<T>();
 }
 },
 SOFT {
 public <T> Pointer<T> make() {
 return new SoftPointer<T>();
 }
 };

 public abstract <T> Pointer<T> make();
}

 of 4825

PointerTest Example

private static void test(PointerType type) {
 System.out.println("Testing " + type + " Pointer");
 MyObject obj = new MyObject(type.toString());
 Pointer<MyObject> pointer = type.make();
 pointer.set(obj);
 System.out.println(pointer.get());
 obj = null;
 forceGC();
 System.out.println(pointer.get());
 forceOOME();
 System.out.println(pointer.get());
 System.out.println();
}

 of 4826

Danger – References

 References put additional strain on GC

 Only use with large objects

 Memory space preserving measure
• But can severely impact on performance

 Even empty finalize() methods can cause
OutOfMemoryError
• Additional step in GC that runs in separate thread

 of 4827

Defining a Dynamic Proxy

 We make a new instance of an interface class using
java.lang.reflect.Proxy:

Object o = java.lang.reflect.Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{ interface to implement },
 implementation of java.lang.reflect.InvocationHandler
);

 The result is an instance of interface to implement

 of 4828

import java.lang.reflect.*;
public class VirtualProxy<T> implements InvocationHandler {
 private final Pointer<T> realSubjectPointer;
 private final Object[] constrParams;
 private final Constructor<? extends T> subjectConstructor;
 public VirtualProxy(Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams,
 PointerType pointerType) {
 try {
 subjectConstructor = realSubjectClass.
 getConstructor(constrParamTypes);
 realSubjectPointer = pointerType.make();
 } catch (NoSuchMethodException e) {
 throw new IllegalArgumentException(e);
 }
 this.constrParams = constrParams;
 }

 of 4829

 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 T realSubject;
 synchronized (this) {
 realSubject = realSubjectPointer.get();
 if (realSubject == null) {
 realSubject = subjectConstructor.newInstance(
 constrParams);
 realSubjectPointer.set(realSubject);
 }
 }
 return method.invoke(realSubject, args);
 }
}

 Whenever any method is invoked on the proxy object, it
gets the real subject from the Pointer and creates it if
necessary

 of 4830

A word about synchronization

 We need to synchronize whenever we check the value
of the pointer
• Otherwise several realSubject objects could be created

• However, no one else will have a pointer to this object

• Thus, it is fairly safe to synchronize on “this”

 Double-checked locking idiom was broken pre-Java 5
• It now works if you make the field volatile

• Easier to get synchronized correct than volatile

 of 4831

Proxy Factory

 To simplify our client code, we define a Proxy Factory:
@SuppressWarnings("unchecked") // be very careful of using this!
public class ProxyFactory {
 public static <T> T virtualProxy(Class<T> subjectIntf) { ... }

 public static <T> T virtualProxy(Class<T> subjectIntf,
 PointerType type) { ... }

 public static <T> T virtualProxy(Class<T> subjectIntf,
 Class<? extends T> realSubjectClass, PointerType type) { ... }

 public static <T> T virtualProxy(Class<T> subjectIntf,
 Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams, PointerType type) { ... }
}

 of 4832

Proxy Factory

 We will just show the main ProxyFactory method:
• The other methods send default values to this one

public class ProxyFactory {
 public static <T> T virtualProxy(Class<T> subjectInterface,
 Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams, PointerType type) {
 return (T) Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{subjectInterface},
 new VirtualProxy<T>(realSubjectClass,
 constrParamTypes, constrParams, type));
 }
}

 of 4833

import static com.maxoft.proxy.ProxyFactory.virtualProxy;
import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket1 {
 public static void main(String[] args) throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, virtualProxy(MoralFibre.class));
 SECONDS.sleep(2);
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

 of 4834

 Weak Pointer is cleared when we don’t have a strong
ref

Company maxsol = new Company("Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, WEAK));
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

// short term memory...
System.gc();
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

 of 4835

 Soft Pointer more appropriate

 Company maxsol = new Company("Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, SOFT));
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 maxsol.becomeFocusOfMediaAttention();

 System.gc(); // ignores soft pointer
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 maxsol.becomeFocusOfMediaAttention();

 forceOOME(); // clears soft pointer
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 maxsol.becomeFocusOfMediaAttention();
}
private static void forceOOME() {
 try {byte[] b = new byte[1000000000];}

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
Look how good we are...
java.lang.OutOfMemoryError:
 Java heap space
Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

 of 4836

Performance of Dynamic Proxies
N

o
Pr

ox
y

H
ar

dc
od

ed

D
yn

am
ic

 (S
tr

on
g)

D
yn

am
ic

 (W
ea

k)

D
yn

am
ic

 (S
of

t)

2226
105 545353

275

933
Method calls (100000/s)
Standard Deviation

 of 4837

Analysis of Performance Results

 Always look at performance in real-life context
• In your system, how often does a method get called per second?

• What contention are you trying to solve – CPU, IO or memory?
 Probably the wrong solution for CPU bound contention

 Big deviation for “No Proxy” – probably due to HotSpot
compiler inlining method call.

 of 4838

Virtual Proxy Gotchas

 Be careful how you implement equals()
• Should always be symmetric (from JavaDocs):

 For any non-null reference values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true

 Exceptions
• General problem with proxies

 Local interfaces vs. remote interfaces in EJB

• Were checked exceptions invented on April 1st ?

 of 4839

Checkpoint

 We’ve looked at the concept of a Virtual Proxy based
on the GoF pattern

 We have seen how to implement this with dynamic
proxies (since JDK 1.3)

 We have also looked at Soft and Weak refs

 Lastly, we were unsurprised that dynamic proxy
performs worse than handcoded proxy

 of 4840

Further uses of Dynamic Proxy

 Protection Proxy
• Only route the call when caller has the correct security context

 Similar to the “Personal Assistant” pattern

 Dynamic Decorator or Filter
• We can add functions dynamically to an object

• See http://javaspecialists.co.za/archive/newsletter.do?issue=034

• Disclaimer: I tried to read it today, and don’t understand it either

 of 4841

Dynamic Object Adapter

 Based on Adapter pattern by GoF

 Plain Object Adapter has some drawbacks:
• Sometimes you want to adapt an interface, but only want to override

some methods

• E.g. java.sql.Connection

 Structurally, the patterns Adapter, Proxy, Decorator and
Composite are almost identical

 of 4842

Object Adapter Structure (GoF)

 of 4843

 We delegate the call if the adapter has a method with this
signature

 Objects adaptee and adapter can be of any type

public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 try {
 // find out if the adapter has this method
 Method other = adaptedMethods.get(// only declared methods
 new MethodIdentifier(method));
 if (other != null) { // yes it has
 return other.invoke(adapter, args);
 } else { // no it does not
 return method.invoke(adaptee, args);
 }
 } catch (InvocationTargetException e) {
 throw e.getTargetException();
 }
}

 of 4844

 The ProxyFactory now gets a new method:

public class ProxyFactory {
 public static <T> T adapt(Object adaptee,
 Class<T> target,
 Object adapter) {
 return (T) Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{target},
 new DynamicObjectAdapter<T>(adapter, adaptee));
 }
}

 of 4845

 Client can now adapt interfaces very easily

import static com.maxoft.proxy.ProxyFactory.*;

// ...

Connection con = DriverManager.getConnection("...");
Connection con2 = adapt(con, Connection.class,
 new Object() {
 public void close() {
 System.out.println("No, do not close connection");
 }
 });

 For additional examples of this technique, see
• http://javaspecialists.co.za/archive/newsletter.do?issue=108

 of 4846

Benefits of Dynamic Proxies

 Write once, use everywhere

 Single point of change

 Elegant coding on the client
• Esp. combined with static imports & generics

 Slight performance overhead
• But view that in context of application

 of 4847

Demo

 Short demonstration using Dynamic Virtual Proxy for
new interface

 of 4848

Conclusion

 Thank you very much for listening to me

 In my experience, Dynamic Proxies are easy to use

 Look for applications where they are appropriate

